Game Theory
Lecture 12

Ccongestion and Potential Games



Introduction

In general, to represent an n player game in which each player
has k actions, we need k" numbers just to encode the utility
functions.

» Clearly, for even moderately large k and n, nobody could
be expected to understand, let alone play rationally, In
such a game.

Hence, we will generally think about games that have
substantially more structure -despite being large, they have a
concise description that makes them easy to reason about.

In this lecture, we begin by talking about a class of succinctly
representable games, viz. congestion games.

We will then generalize and introduce a broader but similarly
tractable class of games, viz. potential games.

» Throughout the lecture, 1t will be convenient to think of
players as having cost functions rather than utility
functions.

= Players want to minimize their cost, rather than
maximize their utility- but 1f you like, you can define
their utility functions to be the negation of their cost
functions.



Congestion Games

Definition A congestion game is defined by:

1. A set of n players P
2. A set of m facilities F

3. For each player 1, a set of actions A;. FEach action a; € A,

represents a subset of the facilities: a; € F'.

4. For each facility 7 € F', a cost function ¢; : {0,....nt — Rxg.

(i (k) represents “the cost of facility j when k players are using it”.

Player costs are then defined as follows. For action profile
a=(ay,...,a,) define n;(a) = {2 :7 € a;}|to be the number of
players using facility 9. Then the cost of a,gé'mf 218!
ci(a) = €i(n;(a))
Jj€a;
i.e. the total cost of the facilities she is using.



Congestion Games: Example
* Let’s give an Illustrative example of a congestion game.

* Players A,B and C have to go from point S to T using road
segments SX,XY,...etc. (See Figure).

AB,C

AB,C

Y
* Numbers on edges denote the cost for a single user for

using the corresponding road segment, where the actual
cost Is a function of the actual number of players using that
road segment (i.e. a discrete delay function).

» For example: If segment SX Is used by 1,2, or 3 users,
the cost on that segment would be 2,3, or 5,
respectively. The total cost for a player Is the sum of
the costs on all segments he uses. 4



Finding Equilibria in Congestion Games

* Ok -so congestion games define an interesting class of n-
player, many-action games that nevertheless have a
simple structure and concise representation. What can we
say about them?

» Do they have pure strategy Nash equilibria?
» Can we find those equilibria efficiently?

» Would agents, interacting together in a decentralized
way naturally find said equilibria?

 To answer many of these questions, we will consider
“Best response dynamics".

» We present it as an algorithm, but you could equally
well think about It as a natural model for how people
would actually behave Iin a game.

» The basic Idea Is this: we start with players playing an
arbitrary set of actions. Then, In arbitrary order, they
take turns changing their actions so that they are best
responding to their opponents. We continue until (if?)
this process converges.
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Best Response Dynamics

Algorithm 1 Best Response Dynamics

Initialize a = (a1,...,a,) to be an arbitrary action profile.

while There exists ¢ such that a; € argmingc 4, ¢;(a,a_;) do
Set ; — alrg miﬂaeAi CQ;(CL, CL_@',)

end while

Halt and return a.

Claim If best response dynamics halts, It returns a pure
strategy Nash equilibrium.

Proof Immediate from halting condition- by definition,
every player must be playing a best response. B

» Of course, It won't always halt — e.g., consider matching
pennies -but what the above claim means Is that to prove
the existence of pure strategy Nash equilibria In
congestion games, It suffices to analyze the above
algorithm and prove that it always halts.

Theorem Best response dynamics always halt in congestion
games.

Corollary All congestion games have at least one pure Nash
equilibrium. 6



Proof We will study the following potential function ¢ : A — R
defined as follows:

m nj(a)

dla) =) Y (k)

j=1 k=1
(Note that the potential function is not social welfare).

Now consider how the potential function changes in a single

round of best response dynamics, when player ¢ switches from
playing some action a; € A; to playing p, € A, instead.

First, because this was a step of best response dynamics, we
know that the switch decreased player ;’s cost:

Ac; = Ci(bi;a—i) — Ci(a?l;a—i)
= Y Linj(a)+1) = > {(nj(a))
jeb; \a; JEa; \b;

< 0



The change in potential is:

Ap = ¢(bia—;) — ola;,a_;)
— Z li(nj(a) +1) — Z tj(n;(a))

jeb\a; jEa; \b;

— AC?;
* Hence, we know that Ao < 0.

* But since ¢ can take on only finitely many different
values (why?) and decreases between each round of
best response dynamics, the potential function will
eventually reach a local minima. At this point, no
player can achieve any improvement, therefore, best
response dynamics must eventually halt; 1.e., we
reach a pure strategy Nash equilibrium. Q
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Speeding up the Convergence

» Of course, we have only
convergence.

proven convergence, not fast

» It might take a long time, and If It takes an
unreasonably long time (say exponentially many
rounds In the number of players), then it might not
be a reasonable prediction to assert that rational
players will play a Nash equilibrium.

» Bad news: It might take a really long time for best

response dynamics to C

onverge!

» But we will be able to say that they converge quickly
to an approximate Nash equilibrium.

Definition An action profile a

= AIs an “g —approximate " pure

NE if for every player i, and for every action a; € A;:
/
ci(ai,a_;) <cila,,a_;)+e

I.e. nobody can gain more than & by deviating.



Finding Approximate NE

 Lets consider a modification of best response dynamics

that only has people move If they can decrease their cost
by at least &:

Algorithm 2 FindApproxNash(e)

Initialize a = (a1, ..., a,) to be an arbitrary action profile.

while There exists 7, a. such that ¢;(al,a—;) < c¢i(a;,a—;) — € do
Set a; = argmingc 4, ¢;(a,a_;)

end while

Halt and return a.

Claim If FindApproxNash(e) halts, It returns an & -
approximate pure strategy Nash equilibrium.

Proof Immediate by definition. U
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Congestion Games

Theorem [n any congestion game, FindApproxzNash(e) halts

after at most:
n -1 - Cmax

€

Proof We revisit the potential function ¢. Recall that Ac¢; = A
on any round when player I moves.

Observe also that at every round, ¢ > 0, and

m mnj(a)

@(CL) — Z Z fj(k) <N -Mm- Cmax

j=1 k=1

By definition of the algorithm, we have Ac; = A¢p < —e¢
at every round, and so the theorem follows. IR
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A Natural Generalization:
Weighted Congestion Games

* \Weighted congestion games look almost like a congestion game
(In that there are still players and facilities), but the costs of each
facility depend not just on how many people are playing on It,
but on which players are playing on it.

First Example: A Load Balancing Game

Definition A load balancing game on identical machines models
n players 1 € P scheduling jobs of size w; > 0 on m identical

machines F'. The game has:

1. Action space A; = F for each player

2. For each machine j € F, a load (;(a) = _,., _; w;

The cost of player i is the load of the machine he plays on: c;(a) = ¢, (a).

Theorem Best response dynamics converge in load balancing
games on identical machines.

Corollary Load balancing games on identical machines have pure
strateqy Nash equilibria

12



Proof We use a variation of our potential function argument

(but need a new potential function).

Define ¢(a) = 2 i li(a)®,

Suppose player 7 switches from machine j to machine j’.

Then we have:

Aci(a) = (i azi) —ci(j,as)
< 0

Similarly, we have:

Ag(a) = o', a—i) —o(j,a—;)

1

= 5 ((ty(a) + wi)* + (((a) —wi)* = L (a)* = £(a)?)
1

= 3 (ijfj’(a/) + wf — 2wl i(a) + w?)

= w; (L (a)+w; —L;(a))

p— wj; - AC@(G/)

< 0

* Note that unlike In congestion games, the change In potential
function 1s not equal to the change In player cost when player's
make unilateral deviations.

* Nevertheless, It decreases with every better-response deviation,
and because It 1s always non-negative (and because there are only

finitely many action profiles), this process must eventually halt.



Second Example of a Weighted Congestion Game

Two Players wish to choose a route s — ¢, each has a route s — ¢,
cach has a weight w; = 1,wy, = 2.

The edge’s discrete delay tunctions are as shown in the figure.

2{10/12

8/9/10 @ 8/9/10Q

A necessary condition for a pure equilibrium is that each player
chooses a route that is in his BestResponse given the other
player’s chosen route. That is, a; € BR;(az) and a2 € BRy(a;)

In this example there are only four s — ¢ routes, and by going
over all 4 options for a; it i1s easy to see that the two necessary
conditions can not hold at the same time, and therefore in this

example there 1s no pure equilibrium. y



Potential Games

* We saw that congestion games always have pure NE, but weighted
congestion games do not necessarily have pure NE.

* On the other hand, not all games Iin which best response dynamics
converge need to "look like" congestion games.

 We ask how far we can go beyond congestion games while still
being certain that best response dynamics will converge to pure
strategy Nash equilibria.

» Recall that If BRD converges, It Is necessarily to a pure strategy
Nash equilibrium, so the question is really just when do they
converge.

* We will see that the class of games in which best response dynamics
converge to a pure NE extends beyond congestion games, and
similarly, beyond games in which we can define a potential function
that changes exactly as the best response player's utility changes
(e.g. the load balancing game).

* We start with introducing exact potential games (EPG):

Definition A function ¢ : A — R~¢ 1s an exact potential function

for a game G if for all a € A, all i, and all a;,b; € A;:

¢(bi,a—;) — olai,a—;) = ci(bi,a—;) — ci(a;, a—;)
Definition A game G is called an exact potential game (EPG) If it
has an exact potential function. 15



Example of an Exact Potential Game

Consider an undirected graph G' = (V, E/) with a weight
function w on 1ts edges.

In this game the players are the vertices and the
goal 1s to partitionthe vertices set V into two distinct

subsets D1, Dy (where Dy U Dy = V).

For every player i, choose s; € {—1,1} where choosing

s;, = 1 means that ¢+ € D; and s; = —1 means that 1 € Ds.

The weight on each edge denotes how much the corresponding

vertices 'want’ to be on the same set.
16



Example of an Exact Potential Game

Thus, define the value function of player ¢ as

”Ufz(g) — Zj;éi Wi,jSi9j -
A player 'gains’ w; ; for players that are in the same

with him,and ’loses’ for player in the other set.

Note that w;; can be negative.
Each player tries to maximize its utility function.

On the example given In the figure, It can be seen that
players 1,2 and 4 have no Interest in changing their
strategies, however, player 3 Is not satisfied, It can
Increase his profit by changing his set to D;.

17



Example of an Exact Potential Game

Using ®(s) = ) _;_, wi;js;is; as our potential function, let us

consider the case where a single player ¢ changes its strategy
(shifts from one set to another):

Aug} — Zj#i Wi jSiSj — Zj#i wi,j(_si)sj —
2 Zj;éi wijsis; = A(D)

Which means that ® is an exact potential function.,

therefore we conclude that the above game 1s an
exact potential game.

18



Some Remarks on Exact Potential Games

* Any congestion game (as defined earlier) 1s an exact potential
game.

* Having an exact potential function is sufficient for best response
dynamics to converge.

* However, It Is not clear that It I1s necessary {in particular, we did
not exhibit one for the load balancing game (See slides 12,13)}.

Definition ¢ : A — R>¢ 25 an ordinal potential function for a
game G if for all a € A, all v, and all a;,b; € A;:

i.e. the change in utility s always equal in sign to the change in
potential.

 We will now show that ordinal potential functions exactly
characterize those games In which best response dynamics IS
guaranteed to converge.

Definition A game G is called an ordinal potential game (OPG) if it
has an ordinal potential function.

Theorem Best response dynamics Is guaranteed to converge In a
game G If and only If the game Is an ordinal potential game.

19



Proof We already know how to show having an ordinal potential function is
sufficient for the convergence of best response dynamics {this is the
template proof we have applied 3 times now.} To prove that its existence is

necessary, consider the following state graph G = (V;E):
1. Let each a € A be a vertex in the graph: 1.e. V = A.

2. For each pair of vertices a,b € V, add a directed edge (a,b) if it is
possible to get from b to a via a best response move —1.e. if there
1s some index 2 such that b= (b;, a_;), and ¢;(b;, a—;) < ¢i(a).

state graph G = (V, E)

Player 3

V = states E = better/best responses

» Best response dynamics can be viewed as traversing this graph,
starting at some arbitrary vertex a, and then traversing the graph
along Its edges (which it can do breaking ties arbitrarily).

* The Nash equilibria are exactly the sinks In this graph (in which no
player can make a best response move).

* If best response dynamics always converges, it must be that the
graph has no cycles. 50



In this case, we construct an ordinal potential function ¢ as follows.

Since the graph has no cycles there must be reachable from every
state a some some sink s (i.e. a pure strategy Nash equilibrium)

For each state a, let ¢(a) denote the length of the longest finite
path in & from a to any sink s.

Theproperty we require is that ¢(b) < ¢(a) for any pair of vertices
(a,b) with an edge a — b.

But observe that by definition, if there is an edge a — b, then
pla) = ¢(b) +1

because there is at the very least a paththat first goes to b,
and then takes the longest path from b to a sink . which

completes the proof. B

21



Appendix



Ci(bia a—’i) —

Ac; = Ci(bm@—z)—cz(@m@—@)
= Y Linila)+1) = Y Li(ng(a))
iji\@q‘, ani\b«,—g
< 0
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m Ty (@)
l(k)

j=1 k=1

Qb(a/’iﬂa/—??) —

0 + £;1(1) + -+ £ (njr(a))+
0+ fju(l) + e fjll (le//(a))

Qb(b?'a a’—’f):

0+ £;(1) + -+ £ (n;(@) )+£; (n (@) + 1)+

0+ (1) + -+ ¢ (n/(a)—1)+
0+3H(1)+ +f~ nu(a)

A

ZE?’L]

jEa; \b;

\/
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