
1

Congestion and Potential Games

Game Theory
Lecture 12
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• In general, to represent an n player game in which each player

has k actions, we need kn numbers just to encode the utility

functions.

 Clearly, for even moderately large k and n, nobody could

be expected to understand, let alone play rationally, in

such a game.

• Hence, we will generally think about games that have

substantially more structure -despite being large, they have a

concise description that makes them easy to reason about.

• In this lecture, we begin by talking about a class of succinctly

representable games, viz. congestion games.

• We will then generalize and introduce a broader but similarly

tractable class of games, viz. potential games.

 Throughout the lecture, it will be convenient to think of

players as having cost functions rather than utility

functions.

 Players want to minimize their cost, rather than

maximize their utility- but if you like, you can define

their utility functions to be the negation of their cost

functions.

Introduction
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Congestion Games
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• Let’s give an illustrative example of a congestion game.

• Players A,B and C have to go from point S to T using road

segments SX,XY,...etc. (See Figure).

Congestion Games: Example

• Numbers on edges denote the cost for a single user for

using the corresponding road segment, where the actual

cost is a function of the actual number of players using that

road segment (i.e. a discrete delay function).

 For example: if segment SX is used by 1,2, or 3 users,

the cost on that segment would be 2,3, or 5,

respectively. The total cost for a player is the sum of

the costs on all segments he uses.
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• Ok -so congestion games define an interesting class of n-

player, many-action games that nevertheless have a

simple structure and concise representation. What can we

say about them?

 Do they have pure strategy Nash equilibria?

 Can we find those equilibria efficiently?

 Would agents, interacting together in a decentralized

way naturally find said equilibria?

• To answer many of these questions, we will consider

“Best response dynamics".

 We present it as an algorithm, but you could equally

well think about it as a natural model for how people

would actually behave in a game.

 The basic idea is this: we start with players playing an

arbitrary set of actions. Then, in arbitrary order, they

take turns changing their actions so that they are best

responding to their opponents. We continue until (if?)

this process converges.

Finding Equilibria in Congestion Games
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Best Response Dynamics

Claim If best response dynamics halts, it returns a pure

strategy Nash equilibrium.

Proof Immediate from halting condition- by definition,

every player must be playing a best response. 

• Of course, it won't always halt – e.g., consider matching

pennies -but what the above claim means is that to prove

the existence of pure strategy Nash equilibria in

congestion games, it suffices to analyze the above

algorithm and prove that it always halts.

Theorem Best response dynamics always halt in congestion 

games.

Corollary All congestion games have at least one pure Nash 

equilibrium.
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• Hence, we know that

• But since 𝜙 can take on only finitely many different

values (why?) and decreases between each round of

best response dynamics, the potential function will

eventually reach a local minima. At this point, no

player can achieve any improvement, therefore, best

response dynamics must eventually halt; i.e., we

reach a pure strategy Nash equilibrium. 
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• Of course, we have only proven convergence, not fast

convergence.

 It might take a long time, and if it takes an

unreasonably long time (say exponentially many

rounds in the number of players), then it might not

be a reasonable prediction to assert that rational

players will play a Nash equilibrium.

Bad news: it might take a really long time for best

response dynamics to converge!

But we will be able to say that they converge quickly

to an approximate Nash equilibrium.

Speeding up the Convergence

Definition An action profile a ∈ A is an “𝜺 −approximate” pure 

NE if for every player i, and for every action 𝑎𝑖
′ ∈ 𝐴𝑖:

i.e. nobody can gain more than 𝜀 by deviating.



10

• Lets consider a modification of best response dynamics

that only has people move if they can decrease their cost

by at least 𝜀:

Finding Approximate NE

Claim If FindApproxNash( 𝜀 ) halts, it returns an 𝜀 -

approximate pure strategy Nash equilibrium.

Proof Immediate by definition. 
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Congestion Games
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A Natural Generalization:
Weighted Congestion Games

• Weighted congestion games look almost like a congestion game

(in that there are still players and facilities), but the costs of each

facility depend not just on how many people are playing on it,

but on which players are playing on it.

First Example: A Load Balancing Game
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• Note that unlike in congestion games, the change in potential

function is not equal to the change in player cost when player's

make unilateral deviations.

• Nevertheless, it decreases with every better-response deviation,

and because it is always non-negative (and because there are only

finitely many action profiles), this process must eventually halt.
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Second Example of a Weighted Congestion Game
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Potential Games
• We saw that congestion games always have pure NE, but weighted

congestion games do not necessarily have pure NE.

• On the other hand, not all games in which best response dynamics

converge need to "look like" congestion games.

• We ask how far we can go beyond congestion games while still

being certain that best response dynamics will converge to pure

strategy Nash equilibria.

 Recall that if BRD converges, it is necessarily to a pure strategy

Nash equilibrium, so the question is really just when do they

converge.

• We will see that the class of games in which best response dynamics

converge to a pure NE extends beyond congestion games, and

similarly, beyond games in which we can define a potential function

that changes exactly as the best response player's utility changes

(e.g. the load balancing game).

• We start with introducing exact potential games (EPG):

Definition A game G is called an exact potential game (EPG) if it 

has an exact potential function.
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Example of an Exact Potential Game
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Each player tries to maximize its utility function.

On the example given in the figure, it can be seen that

players 1,2 and 4 have no interest in changing their

strategies, however, player 3 is not satisfied, it can

increase his profit by changing his set to D1.

Example of an Exact Potential Game
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Example of an Exact Potential Game
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Some Remarks on Exact Potential Games
• Any congestion game (as defined earlier) is an exact potential

game.

• Having an exact potential function is sufficient for best response 

dynamics to converge. 

• However, it is not clear that it is necessary {in particular, we did 

not exhibit one for the load balancing game (See slides 12,13)}.

• We will now show that ordinal potential functions exactly

characterize those games in which best response dynamics is

guaranteed to converge.

Theorem Best response dynamics is guaranteed to converge in a

game G if and only if the game is an ordinal potential game.

Definition A game G is called an ordinal potential game (OPG) if it 

has an ordinal potential function.
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Proof We already know how to show having an ordinal potential function is

sufficient for the convergence of best response dynamics {this is the

template proof we have applied 3 times now.} To prove that its existence is

necessary, consider the following state graph G = (V;E):

• Best response dynamics can be viewed as traversing this graph,

starting at some arbitrary vertex a, and then traversing the graph

along its edges (which it can do breaking ties arbitrarily).

• The Nash equilibria are exactly the sinks in this graph (in which no

player can make a best response move).

• If best response dynamics always converges, it must be that the

graph has no cycles.
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Appendix
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j j' j"

j j' j"

ℓ𝑗′ 𝑛𝑗′ 𝒂 + ℓ𝑗′′ 𝑛𝑗′′ 𝒂

ℓ𝑗 𝑛𝑗 𝒂 + 1 + ℓ𝑗′′ 𝑛𝑗′′ 𝒂

−𝑖 −𝑖 −𝑖

−𝑖−𝑖−𝑖
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j j' j"

j j' j"

0 + ℓ𝑗 1 +⋯+ ℓ𝑗 𝑛𝑗 𝒂 +

0 + ℓ𝑗′ 1 +⋯+ ℓ𝑗′ 𝑛𝑗′ 𝒂 +

0 + ℓ𝑗′′ 1 +⋯+ ℓ𝑗′′ 𝑛𝑗′′ 𝒂

−𝑖 −𝑖 −𝑖

−𝑖−𝑖−𝑖

0 + ℓ𝑗 1 +⋯+ ℓ𝑗 𝑛𝑗 𝒂 +ℓ𝑗 𝑛𝑗 𝒂 + 1 +

0 + ℓ𝑗′ 1 +⋯+ ℓ𝑗′ 𝑛𝑗′ 𝒂 − 1 +

0 + ℓ𝑗′′ 1 +⋯+ ℓ𝑗′′ 𝑛𝑗′′ 𝒂


